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Abstract: Large-scale microsimulations are increasingly resourceful tools for analysing in detail
citywide effects and alternative scenarios of our policy decisions, approximating the ideal of ‘urban
digital twins’. Yet, these models are costly and impractical, and there are surprisingly few published
examples robustly validated with empirical data. This paper, therefore, presents a new large-scale
agent-based traffic microsimulation for the Barcelona urban area using SUMO to show the possibilities
and challenges of building these scenarios based on novel fine-grained empirical big data. It combines
novel mobility data from real cell phone records with conventional surveys to calibrate the model
comparing two different dynamic assignment methods for getting an operationally realistic and
efficient simulation. Including through traffic and the use of a stochastic adaptive routing approach
results in a larger 24-hour model closer to reality. Based on an extensive multi-scalar evaluation
including traffic counts, hourly distribution of trips, and macroscopic metrics, this model expands
and outperforms previous large-scale scenarios, which provides new operational opportunities in
city co-creation and policy. The novelty of this work relies on the effective modelling approach
using newly available data and the realistic robust evaluation. This allows the identification of the
fundamental challenges of simulation to accurately capture real-world dynamical systems and to
their predictive power at a large scale, even when fed by big data, as envisioned by the digital twin
concept applied to smart cities.

Keywords: traffic microsimulation; real data; validation; SUMO; urban digital twin; smart cities;
large-scale; mobile phone data

1. Introduction

Cities are complex systems [1] that feature non-stationary behaviour [2], that is, they
are in constant change and transformation. To increase the quality and resilience of urban
areas, new forms of mobility, together with different patterns of (land) use, and a redesign
of spaces are proposed, which are typically characterized by as much chaos as order. This
makes them unsuitable for traditional control approaches, as the involved conditions and
problems are always evolving. This complexity of urban settings makes it particularly
difficult to assess and evaluate the feedback, side and cascading effects of policies, decisions,
and behaviours. Unfortunately, testing in real-life settings is costly, risky, sometimes
unethical, and often unfeasible. Even in the case of piloting, the possibility of extrapolating
and scaling results is questionable.

Alternatively, it is possible to develop computer-based simulation models that try to
capture the functioning of a city as accurately as possible [3]. The development of such
virtual scenarios allows testing, assessing, and measuring the impact of change at reduced
cost and risk, with higher flexibility, and a capacity to control the conditions better than
possible in real life. These so-called digital twins [4] are fed with (partly real-time) smart
city data [5] and are the goal of many cities [6–11], thereby pushing the long tradition
of urban simulation [12–15] to the technological cutting edge. The progressive spread of
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cyber-physical systems [16,17] becomes a powerful opportunity for real-time management,
for anticipating possible outcomes of planning and policy decisions before implementations
are made, and for fostering co-creation and citizen participation [5].

However, many of the envisioned changes are on a small and high-frequency scale [3,18].
That is, on the scale of people’s perception and experiences, such as drivers getting around,
new forms of mobility, the spatial configuration of buildings, streets, and public spaces,
the design of infrastructures, and the emergence of new smart digitally-enabled systems.
Therefore, the use of simulations as planning tools needs the high level of interpretability
and detail obtained by microsimulations capabilities [19]. Despite all the incremental
details, depth, and richness of information becoming available, it is needed to account for
necessary simplification [3], non-measurable qualities, as well as limitations and uncertain-
ties when it comes to the behaviour of people and socio-cultural systems, which need to be
included [20].

Therefore, the challenge is to build and validate realistically a microsimulation of a
large urban area, to study on a small scale of detail citywide policies. This paper presents a
pipeline to build a digital twin for the traffic flow in the large, dense, and congested urban
area of Barcelona, Spain, based on novel cell-phone mobility data and publicly available
databases using the SUMO agent-based microsimulation framework [21]. The paper is
organised as follows. Section 1.1 introduces existing large-scale urban microsimulation
scenarios. Section 2 describes the pipeline to build the proposed model, including the pre-
calibration of parameters. Section 3 explains the evaluation of the results of the simulation
scenarios based on a robust multi-variable comparison with real measured data, namely
with respect to various metrics on different spatio-temporal scales. Finally, Section 4
expands on limitations, possible applications, and potential future research.

1.1. Existing Large-Scale Urban Microsimulation Scenarios

Agent-based microsimulations follow the logic that larger-scale effects observed in
the physical reality can be obtained by the aggregation of emulated individual properties
and behaviours of agents at a small scale (such as the individual position, speed, and
acceleration) [22]. However, they require large amounts of detailed disaggregated data and
long processing times, needing considerable computational resources both for calibrating
and for running them. Determining the many parameters describing individual behaviours
and the interactions of numerous agents, are among the main challenges in building,
calibrating, and evaluating these models. This results in compromises in terms of realism,
while one needs to consider that minor errors in any of these components may propagate
and cumulate, thereby producing deviations or even incorrect results [23].

The relatively few published examples of complete, comprehensive, and validated
large-scale urban scenarios using microsimulations reflect this complexity. Urban settings
are even more challenging to calibrate and build than equivalent interurban settings [24,25],
because of very high levels of mobility demand concentrated in small areas with complex,
dense, and intricate networks.

The numerous examples of building, calibrating, and validating traffic simulations in
scientific literature and policymaking [11,26–30] show this complexity trade-off between
size and level of detail: large-scale models are more suitable for macro and mesoscopic
approaches, while detailed microsimulations focus on smaller scenarios [31]. This bounds
their operational possibilities and limits the detailed study of citywide interventions and
policies [32]. Precisely, this paper focuses on this gap in the urban simulation literature: the
lack of large-scale urban scenarios that use traffic microsimulation [33–35], and missing
robustly quantitative validation with real data [33,36–41] (see Table A1). Reviewing the few
scenarios combining a large-scale scope with a microscopic approach supports the design
of the proposed new data pipeline for building, calibrating, and validating the model while
being able to highlight and address the existing challenges:
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• Large urban microscopic scenarios are complicated and slow, which obstructs mi-
crosimulations over extended periods of time, as well as their calibration (requiring
multiple runs with different parameter sets);

• This causes compromises between efficiency and realism;
• Validation is often based on a qualitative assessment of results or lacks a quantitative

comparison with empirical measurements (requiring a different data set than used
for calibration);

• The empirical data needed are frequently incomplete or inaccurate.

However, beyond the different combinations of data sources and strategies for demand
creation used by these urban simulations, their most relevant differences are in their size
and validation methods. The lack of commonly established approaches and the differences
in available observational data in each location for validation makes it difficult to assess
the results and consequently to compare them regarding size, duration, and realism.

Therefore, this paper analyzes existing examples to develop further large-scale mi-
croscopic urban simulations with a wide multi-scalar realistic validation supported by
observational data. It aims to provide a feasible path to investigate their new operational
capabilities and limitations, both in applicability and developments steps within the in-
creasing interest of the so-called ‘digital twins’.

Hence, the proposed microsimulation for the large urban area of Barcelona combines
novel mobility data from cell phone records and publicly traditional surveys with detailed
urban network data extracted from OpenStreetMap. The quantitative validation is based
on a different empirical data set over 24 h using various metrics. As a result, reportedly, this
model is one of the most complete published large-scale urban traffic microsimulations re-
garding the scope, network size, duration, and realism (validation). Hence, this is probably
the most detailed simulation scenario based on continuous-in-time car-following and route
choice models currently known, which allows us to judge the potentials, challenges, and
limitations of the “digital twin” approach including the technical feasibility of the concept,
its safety, societal impact, and predictability power (see Section 4).

2. Materials and Methods: Building of the Scenario

The construction of a new microsimulation model for the urban area of Barcelona
is based on the use of traditional data sources, including publicly available geographical
information and conventional surveys, as well as new big data, specifically anonymized mo-
bility data from mobile phones geographic position records. The general pipeline (Figure 1)
shows the three main steps for building the scenario. The first step involves the generation
of the transport system network and the travel demand. In the second step, the travel de-
mand is adapted to find an efficient spatial distribution of routes through microsimulations.
Finally, the third step compares the results of the resulting microsimulations from stage
two with real-world data to evaluate how well the model fits the empirical ground truth.

The microsimulation software SUMO [21] is particularly suited for this purpose be-
cause of its open-source design, offering microscopic and mesoscopic capabilities able to
conveniently provide detailed descriptions of interactions [19] and great versatility for
scenario building [42,43]. Among others, it supports different data formats, demand mod-
elling based on synthetic and real populations, different assignment approaches and route
choice methods [44,45], as well as routing algorithms [46–48].

The construction of an urban model to simulate mobility patterns requires two basic
components: (i) a network, as the virtual environment where the agents will move, and
(ii) a demand pattern that will generate the flows between the different locations of the
mentioned network. In this case, the focus of the study is on the interaction between the
(public) road infrastructure and the (private) vehicle traffic. Over here, public transportation
and freight flows (~5% of traffic flow) are not taken into account.
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2.1. Geographical Scope

The implementation of the microsimulation model covers more than the city of
Barcelona itself (Figure 2). The selection of the Metropolitan Region of Barcelona (Regió
Metropolitana de Barcelona or RMB) as the extended initial area of the model, larger than
the city itself, allows including the relevant through traffic for the core area. The RMB
has a size of 3126 km2 and contains about 5,103,000 inhabitants (~40% of the surface and
~90% of the population of the province of Barcelona). It includes the counties (comarques) of
Alt Penedès, Baix Llobregat, Barcelonès, Garraf, Maresme, Vallès Occidental, and Vallès
Oriental. Additionally, surveys use alternative zoning for mobility statistics, based on
concentric metropolitan subareas or belts (city of Barcelona, rest of the inner Metropolitan
Area, outer Metropolitan Area, and rest of the RMB) (Figure 2a). Altogether, the vehicular
trips between Barcelona and any of the locations within the RMB represent 96% of all the
daily car trips measured in the city (i.e., less than 4% of car trips within the city limits of
Barcelona are related to locations out of the RMB) [49] (Table 1).
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Figure 2. Geographical domains covered by the microsimulation: (a) Location of the RMB within
the province of Barcelona, including the different geographical divisions used in the model; (b) Core
area of the detailed microsimulation (in red) defined by the city ring roads (Rondes, in blue) and
corresponding Traffic Assignment Zones (TAZs, in white).

Table 1. Characterization of main metropolitan domains.

Province of
Barcelona

RMB
(Extended Area)

Rondes Area
(Simulation Core)

City of
Barcelona

Area (km2) 7726 3126.2 182.55 101.35
Population (2019) 5,664,579 5,151,263 2,411,755 1,636,762

Total trips (any mode) 19,259,471 17,430,628 8,176,511 5,682,214
Trips in private vehicles 6,946,355 5,927,332 2,063,177 1,653,183

Thus, this expanded spatial scope allows capturing the complete traffic demand in
the denser part of the urban area of Barcelona. Differently than in previously published
microsimulation scenarios, where the network size and complexity in extended urban
regions are frequently cropped or topologically simplified [50,51], in this research, the
extended metropolitan region (RMB) is initially simulated with full detail to provide the
complete spatial distribution of trips within the core area. This core area (see Figure 2b) is
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not based on administrative divisions but on the functional and typological characterization
defined by the main ring roads of the city (i.e., Ronda Dalt and Ronda Litoral, hence its
name, Rondes). It includes the built-up area of the city of Barcelona and parts of a few
surrounding municipalities (l’Hospitalet de Llobregat, Cornellà de Llobregat, Esplugues
de Llobregat, el Prat de Llobregat, Sant Adrià de Besòs, Santa Coloma de Gramenet, and
Moncada i Reixac). This compromise between realism and simplification allows preserving
a realistic representation of the whole traffic demand of a very large urban area without
simplifications while keeping the complexity of the network reasonably well by focusing
on the part of the urban area that suffers the highest levels of congestion (i.e., Rondes).

2.2. Transport Network

For the creation of the urban network, the use of collaborative platforms offers open-
source geographical data with a high degree of precision. OpenStreetMap (OSM) [52]
is probably not only the best-known example of volunteered geographic information
(VGI) [53], it is also used by corporations as a mapping alternative to technologies such as
Google Maps [54]. Additionally, SUMO provides convenient tools to transform OSM data
into networks suitable for microsimulations.

Given the large area to be modelled, a script based on OSMNX [55] is adapted for
downloading OpenStreetMap data [56] in XML format using the Overpass API [57], preserv-
ing all the relevant features for a microsimulation, including access and turning restrictions,
speed limits, priority and class of roads, directions of circulation, traffic signs, and the
number of lanes. SUMO’s netconvert tool [58], allows transforming this OSM XML file into
an appropriate directed road network that encodes all the relevant features in the SUMO
network format. This process relies on a good number of heuristics that try to translate
the original OSM attributes into connectivity features, particularly regarding the layout of
intersections, rights of access, and the positioning and coordination of traffic lights settings.

Note that the frequently inconsistent quality of OSM data [53] directly affects the
creation of the network [59]. Misspecifications in mapping features such as intersections
layout, number of lanes, speed limits, or traffic restrictions lead to unrealistic simulation
outcomes that can considerably affect the performance of the model, for example, a lower
traffic throughput (see Figure 3).
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Figure 3. Process of OSM data acquisition and edit for network generation: (a) OSM data; (b) OSM
data correction based on third-party satellite imagery; (c) SUMO network with conversion errors
(e.g., misspecifications of the lanes number, traffic lights, etc.); (d) final corrected SUMO network
used for the simulation including virtual induction loops to measure traffic flows.

To prioritize the vast task of correcting the large road network, whether due to errors
caused by mapping misspecifications, wrong outcomes of SUMO conversion heuristics, or
a combination of both, two complementary approaches are applied:

• Short simulation runs using direct assignments of the traffic demand are employed to
identify major errors hindering traffic performance.

• Satellite [60–63] and street-level [64,65] imagery are used as independent third-party
reference (ground truth) for correction.
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Most of the needed corrections were done directly on OSM servers, contributing to the
collaborative aim of the platform, by improving and updating the quality of the map in the
area. Some fine-tuning has been performed directly in the definitive SUMO net file, using
SUMO’s netedit tool [66], correcting errors caused by netconvert’s conversion heuristics,
particularly regarding intersections and traffic lights. Traffic light plans are a very relevant
feature. In the current model, the real traffic light system used by the city was not available
to us and, hence, not utilized. To simulate a realistic, simple, and efficient management
of regulated intersections, the actuated option of SUMO is chosen for all the traffic lights
plans [67]. As a result, the network in the extended simulated area (RMB) covers a mix of
urban, suburban, and rural areas. Differently, the core area (Rondes) has a very urban and
dense character (Figure 4 and Table 2 for networks details).
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Table 2. Features of the road networks.

RMB
(Extended Area)

Rondes Area
(Simulation Core)

Area (km2) 7726 182.55
Roads length (km) 24,153.12 2506.03
Lanes length (km) 27,794.13 3673.17
Number of links 204,935 25,307

Number of intersections 98,752 13,993
Traffic lights 3567 2035

Traffic Assignment Zones (TAZs) 577 296
Virtual induction loops 10,496 10,496

2.3. Demand Creation

The approach followed in the demand generation aims to avoid underestimating real
traffic flow, as it seems to happen in many microsimulations. In general, traffic within an
area is expected to be caused by trips that have their origin or destination in that zone and
also by through traffic originating and ending elsewhere. To deal with this situation, a
basic spatial and temporal distribution of traffic is created for the extended simulation area
(RMB) to identify the fraction of traffic that directly affects the core urban area (Rondes),
which provides more realistic results than directly overlooking through traffic (see Section 3
for comparing results without considering through traffic).
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Two sources are used complementarily for the generation of traffic demand:

1. Originally, traffic patterns are extracted from the origin/destination (O/D) matrices
estimated from cell phone data [68,69]. This method provides a direct estimation of
flows between smaller areas (here areas refer to statistical zones used by the Catalan
Institute of Statistics (IDESCAT). They are larger than census tracts, but smaller than
districts or neighborhoods (see Figure 2)) with finer granularity and larger sampling,
overcoming limitations of estimations from self-reported surveys [70]. Given the focus
on vehicular traffic, only the O/D matrix specific for daily private vehicle trips during
a working day is considered, resulting from raw cell phone data processed based on
the modal split from mobility surveys and public transit ridership data;

2. Then, conventional mobility surveys [49,71] are used complementarily to expand
and correct the O/D matrix, in particular, to fill some gaps such as the actual hourly
distribution of trips. It has been observed that the method to infer mobility patterns
based on mobile phone location records tends to overestimate trips [68].

Thus, (1) the mobile phone data determine the detailed proportions of flows between
the areas with a granularity unfeasible for survey data, while (2) the survey data determine
the overall number of trips (which do not count partial trips separately, as cell phone data
often do).

These O/D flows are spatially aggregated at the level of IDESCAT areas (see Figure 2).
These areas considered as Transport or Traffic Analysis Zones (TAZs) are used for georefer-
encing the trips. SUMO provides the edgesInDistricts script [72] to reference network edges
to TAZs in such a way that origins and destinations of trips are linked to defined positions
in the transportation network.

Initially, traffic demand is modelled for the entire extended area (RMB) using default
parameters in SUMO. Later, all the O/D flows, which potentially may affect the core
simulation area (Rondes), are kept, but peripheral traffic flows between the outer AMB and
the outer RMB are ignored. This is also beneficial for computational performance.

As remarked, the main issues of these private vehicles’ O/D matrices from cell phone
data are the overestimation of measured trips and the lack of disaggregated hourly dis-
tributions. Hence, inspired by data fusion approaches, which combine cell phone data
with other sources [73], this model uses mobility surveys for complementing the O/D data.
Particularly, these surveys provide hourly histograms of trips separated by RMB transport
subareas and mode of transportation [49]. This newly implemented method for O/D data
correction and expansion is performed in two steps:

1. TAZs are grouped by transport RMB subarea. Then, following the indications of the
researchers in charge of the original analysis of the cell phone data, O/D flows are
linearly scaled such that they match the number of trips for each of these subareas
measured by the yearly mobility surveys [49,71], which are considered as accurate
references in transport modelling and planning [73]. Each subarea requires a different
scaling, as the errors in the estimation of trips from cell phone data vary with trip
length, population density, and the concentration of antennas [68,70];

2. The scale-corrected and hourly disaggregated O/D data obtained in the first step
assume a symmetric number of trips between the different areas (i.e., outbound and
inbound trips are assumed to be equal in each hour of the day). This is unrealistic,
of course (e.g., residential areas tend to emit more outbound trips in the morning
towards working areas, while they tend to have more inbound trips in the afternoon
and evening for returning commuters). To account for unbalanced flows between
areas, the hourly histogram of trips is corrected by a factor based on skew-normal
distributions for the peak hours of inbound and outbound trips in the morning and
the afternoon/evening [74], which are computed using the Attraction and Emission
Ratio (Ràtio d’atracció i emissió, RAE) [49]. Due to the lack of more disaggregated data,
the trips staying within the same transport subarea are assumed to be symmetrically
balanced throughout the day.



ISPRS Int. J. Geo-Inf. 2022, 11, 24 9 of 28

As a result, 16 different O/D matrices are created for the pairwise relations between
the four transport RMB subareas, accounting for inner, inbound, and outbound trips with
their distinct hourly distributions. For instance, areas with lots of working places tend to
have an inbound morning peak, and outbound afternoon or evening peaks.

In the next stage, all this time-series information is merged in SUMO, using od2trips [75]
with a timeline argument to convert raw O/D matrices into trips files referenced to the
transportation network with the appropriate hourly distribution. The initial travel demand
created by O/D matrices is defined by the time and edge of departure, and the destination
edge in the network for each vehicle or trip. Unfortunately, this does not provide the
whole path needed to identify which trips cross the core area. Therefore, duarouter is
used to route all trips with the Direct User Assignment (DUA) method [76]. Although
this simple assignment approach only provides the optimum path when the network is
empty (i.e., without considering changing traffic conditions and travel times throughout
the day), it is used as a reference to create the initial distribution, which is adapted and
optimized later.

Once the DUA routing is performed for the extended area (RMB), SUMO’s cutRoutes
tool [77] is used for cropping the resulting paths, which traverse the smaller but much
denser network of the core area (Rondes). This is the scenario that is used for detailed
analyses and simulations. Out of the 3,185,185 private vehicle trips initially computed
for the whole extended RMB area, 2,063,177 trips turn out to cross some section of the
core urban area of Barcelona (Rondes) (see Table 2). These are included in the final travel
demand model.

2.4. Calibration of Simulation Parameters

The numerous parameters involved in microscopic models and their long runtimes
(around 30 h in this case) are troublesome for calibration [26], making the use of the
conventional simulation-based optimization [78] paradigm intractable [79]. This leads to
compromises in realism. Initial tests identified that the aspects with the greatest impact
on the simulation performance were the time step defining the temporal resolution, the
car-following model chosen, and the procedure of rerouting:

• The time step of the simulation needed to be reduced from 1 to 0.25 s to reproduce the
continuous change of the traffic state sufficiently well [80];

• Otherwise, the default parameters of Krauss’ car-following [81] and Erdmann’s lane-
changing [82] models in SUMO are used, adjusting the length of the vehicle to 4 m.
This is closer to the average size of vehicles in Spain [83] and also accounts for the
exceptionally high proportion of motorbikes in Barcelona [49,84];

• Two parameters linked to routing are analysed: the probability for a vehicle to update
its path during the simulation (device.rerouting.probability) [85] and the factored priority
of roads (weights.priority-factor) as encoded in OSM data. To find their best values,
different parameter combinations are explored by an algorithm that iteratively runs
simulations for the device.rerouting.probability with values between 0.6 and 1.0 in steps
of 0.1 and for the weights.priority-factor with values between 0 and 110 in steps of 10.
The results are then compared based on the metrics used for the general evaluation of
the model: number of teleports (“Teleporting” is a mechanism that SUMO uses for
avoiding agents, i.e., vehicles or pedestrians, to get indefinitely stuck in the simulation,
by moving them to their following route edge, if they collided or are stopped for
longer than a defined time period [86]. This ensures that minor specification errors do
not mess up the entire simulation.), regression coefficient, R2, RMSE, NRMSE, GEH for
traffic counts, and DTW for the demand time series, see Section 3 for the explanation
of the metrics. Consequently, the method obtains the minimum value for the errors
(RNMSE traffic counts ~ 0.385, DTWhourly demand ~ 3.5) and maximum correlation coefficient
for the linear regression (coefficient ~ 0.91, R2 ~ 0.81) for device.rerouting.probability = 1
and weights.priority-factor = 100 (see Figure 5).
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RMSE, NRMSE, and teleports are preferred, while higher values of the R2, regression coefficient, and
GEH indicate better performance: (a) Total teleports expressed in percentage of total vehicles loaded;
(b) percentage of total demand effectively loaded into the simulation; (c) R2 coefficient between
simulated and real traffic counts; (d) regression coefficient between simulated and real traffic counts;
(e) RMSE between simulated and real traffic counts; (f) NRMSE between simulated and real traffic
counts; (g) distance between theoretical temporal traffic demand curve and simulated based on DTW
metric; (h) percentage of monitored links with a GEH statistic below 5.

2.5. Demand Adaptation

O/D pairs are the only source for the creation of traffic demand. It means that no
ground truth regarding traffic counts, turning ratios, or other similar data is used to force
the demand such that it matches reality. Instead, the results of the unconditioned adaptation
are compared to the empirical “ground truth” to measure the quality of the model (see
Section 3).

The initial demand creation based on a Direct User Assignment (DUA) is simplistic
because: (i) it does not account for the changing traffic conditions over the day (i.e., the
fastest paths change depending on the congestion levels caused by other vehicles in the
network), and otherwise (ii) it is found to be somewhat insufficient for large complex
traffic scenarios. The process of demand adaptation tries to redistribute traffic realistically
and efficiently in a time-dependent way. Frequently, in traffic simulations, this process is
performed by Dynamic User Equilibrium (DUE) algorithms [45], which expand Wardrop’s
user equilibrium principle under the assumption that traffic tends to distribute spatially
such that no single user can improve the travel time by changing the route [87]. However,
making route choices is mostly considered to be a probabilistic process, which rejects the
assumption that drivers have a perfect and complete knowledge of the network to optimize
their travel cost [88].

SUMO provides the duaIterate tool to approximate the DUE [45] through an iterative
optimization process that minimizes the overall travel time (or any other given cost func-
tion). In each run, a DUA is used to perform a whole simulation that allows computing
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the travel costs of edges, considering the changing congestion of the network loaded with
traffic. Then, this is used to compute lower-cost paths, which is the basis of the DUA in the
next iteration. By repeating this process many times, the algorithm tends to get closer to the
equilibrium solution, which is imagined to be the best. Therefore, this paper extends for
larger scenarios from previous approaches on heuristic dynamic assignment for achieving
a stochastic user equilibrium [89] by proposing two iterative optimization approaches
using duaIterate:

• In-Simulation Adaptive Rerouting (iSAR) uses the capabilities of SUMO to allow
vehicles to update automatically their paths during the simulation to find a faster route
based on existing traffic conditions. This approach does not seek directly for a DUE
but tries to adapt traffic efficiently, using a very fast adaptive strategy. Additionally,
integrating this method into the duaIterate routine allows checking the stability of the
results. It might be possible to improve the performance of the traffic assignment
even further by identifying underlying structures in the evolution of the travel costs
of the network, although it is expected that reactive rerouting during simulation could
address many of these effects;

• Iterative Incremental Dynamic User Equilibrium (IIDUE) depends exclusively on
duaIterate to run the simulation and the DUA repeatedly and to adapt the traffic
distribution based on newly found optimal travel costs in each iteration. However,
due to the high level of congestion in this scenario, it is not possible to simulate the
whole traffic demand from the beginning. The oversaturation and gridlock caused by
the initial, trivial DUA do not generate informative travel cost values for edges suitable
for the optimization process. To overcome this limitation, this approach implements
an incremental assignment strategy. Starting with 2% of the overall traffic demand, an
additional 2% of trips are added in each iteration to allow the algorithm to gradually
account for changing travel costs, before reaching unrecoverable and uninformative
congestion. On the other hand, this process is time-consuming, that is, slow and
computationally expensive.

To compute the probability of choosing a new route based on cost optimization in
every single iteration, duaIterate offers two different methods, which are compared: Gawron
and Logit. Both approaches take as inputs a weight or cost function w for the edges, a set
of routes R, and for each of these routes r, an old cost cr, an old probability pr, and a new
cost cr’ and probability pr’ [45]. The two methods differ on how they update these new
values in every simulation iteration:

Logit is simpler. It uses an explicit analytical formula to compute the new probability
directly by only considering the sum of the costs of all edges e, which are part of the route r
in the last iteration:

c′r = ∑
e∈r

w(e) (1)

Then, the probabilities are updated, using an exponential distribution containing a
parameter θ, and normalized by the sum over all routes s in the set R:

p′r =
exp(θc′r)

∑s∈R exp(θc′s)
(2)

However, in this paper, a generalization of the logit model named c-Logit [90] is used,
which is defined by

p′r =
exp(θ(c′r + c f ′r))

∑s∈R exp(θ(c′s + c f ′s))
(3)

This gives more realistic route choice probabilities, which consider a commonality
term c f ′r that accounts for the overlap of alternative paths (this is particularly relevant
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given the regular grid of Barcelona that may lead to many similar overlapping alternatives),
specified by

c f ′r = β ln ∑
s∈R

(
Lrs√

Lr
√

Ls

)γ

(4)

Herein, Lrs is the length of edges shared by routes r and s, respectively, with total
lengths Lr and Ls. β and γ are parameters (when β = 0, c-logit becomes the simpler logit
model). The models in this paper use a value of β = 0.15 and γ = 1 (the default in SUMO).

Gawron computes the probability for choosing a new route from a set of alternatives,
based on the travel time (or any other cost function) of the route chosen in the previous
iteration. It further considers the sum of travel times of these alternatives and the previous
probability of choosing a route [91]. After each simulation iteration, travel times are
updated according to

τ′d(x) =
{

τs(x) if route x was simulated
βτr(x) + (1− β)τd(x) otherwise

(5)

Herein, for a given route x, τs(x) is the simulated travel time, τr(x) is the estimated
travel time from the simulation for other routes not used in the iteration, and β is a
remembering factor for scaling the impact of costs of past unused routes. Then, the
probabilities are updated according to

p′d(r) =
pd(r)(pd(r) + pd(s)) exp

(
αδrs

1−δ2
rs

)
pd(r) exp

(
αδrs

1−δ2
rs

)
+ pd(s)

(6)

and
p′d(s) = pd(r) + pd(s)− pd(s) (7)

where pd(x) and p′d(x) are the prior and new probabilities to use route x, r is the route
used in the previous simulation iteration, s another route in the set of alternatives R, and
δrs is the relative cost difference between routes r and s defined by

δrs =
τd(s)− τd(r)
τd(s) + τd(r)

∈ [−1, 1] (8)

τd(s) represents the travel time for driver d to complete route x. In this scenario, SUMO’s
default values are used for Gawron’s parameters, namely α = 0.5 and β = 0.9.

3. Results Validation

It is not possible to formally prove the convergence of the proposed heuristic dynamic
traffic assignment approaches as there is no analytical solution for the loading process in
microsimulations [89,92]. Therefore, an extensive multi-variable evaluation over the 24 h of
a generic weekday allows test empirically many of the different aspects of the goodness-
of-fit between simulation and reality at different levels and scales. Based on the reviewed
literature regarding traffic simulation evaluation, the chosen performance metrics can be
classified according to their different levels of spatial and temporal aggregation (Figure 6).
However, as already pointed out in previous research, the possibilities of evaluation are
limited by the availability of real data serving as ground truth and different from the ones
used for demand generation.

3.1. Large-Scale Aggregated Metrics: Teleports and Average Travel Time

Let us start by looking at the most aggregated metrics: “Teleporting” has no corre-
spondence to a real measurement, but constitutes a first sanity check of the simulation, as
a large proportion of vehicles teleporting means a poor model performance. In general,
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iSAR shows a reasonable number of teleports (around 5%), with lower variability than the
teleports resulting from the IIDUE method (see Figure 7a,b).
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On the highest level of aggregation, the average travel times between simulation and
reality are compared. Mobility surveys provide information regarding the average duration
of trips for different subareas of the RMB and separated by mode of transport. The inner
Metropolitan Area, which roughly corresponds to the core area of the simulation (Rondes),
has an average travel time for private vehicles of 23.5 min (or 1410 s) [49]. This value is
very similar to the results of the simulations based on the iSAR approach (around 1400 s);
while the average travel times resulting from the IIDUE method deviate considerably (see
Figure 7c).

3.2. Temporally Disaggregated Metrics: Hourly Distribution of Trips

With a higher level of temporal disaggregation, the hourly distribution of trips through-
out the day is as well compared (see Figure 8). For the ground truth, mobility surveys
provide 24-h temporal histograms of when trips begin, differentiated by RMB subareas and
mode of transportation [49] (p. 59).
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Figure 7. Performance of the analysed models (for the core simulation area, Rondes). iSAR outper-
forms IIDUE results: it shows more stable results, closer to measured average travel time, better
goodness of fit, and lower error measures. Shaded ranges show the model’s underperformance when
not considering passing through traffic (i.e., crossing Rondes core area): (a) Total teleports expressed
in percentage of total vehicles loaded; (b) Teleports caused by jams, expressed in percentage of
total vehicles loaded; (c) Average travel times for all vehicles in seconds; (d) R2 coefficient between
simulated and real traffic counts; (e) regression coefficient between simulated and real traffic counts;
(f) RMSE between simulated and real traffic counts; (g) NRMSE between simulated and real traffic
counts; (h) percentage of monitored links with a GEH statistic below 5; (i) percentage of monitored
links with a GEH statistic below 10.

When scenarios are close to congestion, programmed trips may not find enough space
in the transport network to be inserted, such that they are delayed or eventually even
skipped. This can potentially lead to different demand curves or an overall lower processed
demand (see the uncalibrated simulated demand in Figure 7). Dynamic Time Warping
(DTW) [94] with the FastDTW implementation [95] is used to compare real and simulated
temporal distributions. This technique allows finding the similarities between two time
series by non-linearly distorting the time axis, which becomes very useful when divergences
are caused by different speeds, frequencies, and phasing as they may particularly occur in
the case of network (over)saturation. Overall, there is a good match between simulation
and ground truth, with low variability, showing clearly the observed morning and early
evening peaks. The DTW distance value stays very stable across the successive iterations
with a value around 19,000. However, in general, we can consistently observe a slightly
lower simulated demand, particularly in peak hours, most likely due to high levels of
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congestion that prevents some vehicles to be inserted in the network at the expected time,
which are eventually skipped.
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3.3. Spatially Disaggregated Metrics: Traffic Counts

Traffic counts provide a spatially disaggregated evaluation. The city of Barcelona has
488 permanent traffic counting stations (see Figure 9a). However, only Monthly Average
Daily Traffic (MADT) counts are publicly available [96]. Other metrics such as temporal
distributions of trips for each detector [85] and average speeds [29,97], which have been
used effectively for more detailed assessments in other scenarios, were not available.
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Figure 9. Traffic counts: (a) Location of the 488 AADT detectors managed by the city of Barcelona,
which are used to assess the quality of the model calibration; (b) Regression plot comparing real
and simulated traffic counts (averaged over all the iSAR simulations using the c-Logit and Gawron
methods). R2 > 0.8 is considered a good fit.
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The large variability of observed monthly averages throughout the year in some of the
control points (see Figure 10) creates a wide range of possible correct matchings with the
ground truth, particularly as the timestamps of the cell phone tracks used for generating
the traffic demand are unknown. To address this limitation, the monthly averages are
aggregated to annual averages (AADT). Values within 1 standard deviation of this average
are considered to be a good fit.
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Linear regression is used to evaluate the general goodness-of-fit between simulated
and real measurements of traffic counts (see Figure 9b). iSAR simulations results show a
slope of 0.91 and an R2 value of 0.81 (see Figure 7d,e), which can be considered a good
match [98]. Again, the results from the IIDUE method reach worse values for both metrics.

A second set of metrics regarding traffic counts offers a more detailed evaluation.
Among the many available model performance statistics reflecting different aspects of the
discrepancies between predictions and ground truth, three of the most common ones across
recent literature are selected [26,97] (see Table A1): the general Root Mean Square Error
(RMSE), a Normalised Root Mean Square Error (NRMSE), and the Geoffrey E. Harvers
statistic (GEH).

The RMSE and NRMSE are specified a

RMSE =

√
∑n

i=0(Si −Oi)
2

n
(9)

NRMSE =

√
∑n

i=0(Si−Oi)
2

n−1

∑n
i=0 Oi

n

(10)

where n is the number of observation points, and Oi and Si are the real observed and
simulated values of traffic counts at location i, respectively. RMSE is sensitive to scale, so it
allows the comparison of both assignment methods for the two route choice methods as
they use the same traffic demand. The iSAR method shows lower and more stable RMSE
values, which is better than the IIDUE approach, with no relevant differences between the
c-Logit and Gawron methods (see Figure 7f).

RMSE normalization allows for a more general and scale-independent (i.e., data-
independent) comparison between models. The mean of the real observations is chosen as



ISPRS Int. J. Geo-Inf. 2022, 11, 24 17 of 28

the normalization criterion for the NRMSE approach. It reports values in the range [0,1],
so multiplying it by 100 generates a percentage-like score (known as well as NRMSE or
%RMSE). According to the established literature [98–100], any value below 0.3 (or 30%) can
be considered good. In the case of the presented models, the iSAR simulations outperform
again the results of the IIDUE method (see Figure 7g) but even in the best scenario, the
values are above 0.3, so the model performance is limited.

The previously considered metrics (i.e., regression’s coefficient, R2, RMSE, and NRMSE
values), which are commonly used for the performance evaluation of (simulation and
prediction) models in many fields, does not work particularly well for the case of complex
transportation networks with highly variable network elements [26]. To overcome this
problem, the Geoffrey E. Harvers statistic (GEH), which is a modified chi-squared metric, is
frequently used in traffic studies. It leverages relative and absolute differences to compute
percentage errors regarding the mean value of observed and simulated traffic counts. The
GEH statistic is defined by

GEH =

√
(S−O)2

(S + O)/2
(11)

where S is the simulated traffic count, and O is the real observed traffic count [101,102].
GEH values below 5 are considered a good fit, values between 5 and 10 are ok, but need
further checks, and GEH values over 10 are a bad match. Ideally, 85% or more of the
observed links should have a GEH value below 5. None of the resulting models reaches this
score, which is consistent with the analysed previous large-scale urban microsimulations.
However, iSAR performs better, having 38% of the analysed links with a GEH smaller than
5, where the differences between the Gawron and c-Logit approaches are negligible (see
Figure 7h,i).

3.4. Macroscopic Metrics: MFD

Finally, macroscopic fundamental diagrams (MFD) [103] provide an additional per-
spective for the evaluation of the generated models. However, in contrast to the previous
quantitative tests, this check is qualitative. The lack of empirical data and the discrepancies
in estimations for real scenarios [104] are still a challenge for their use. Nonetheless, one
can make an additional assessment with them. The obtained MFD (Figure 11) features
the characteristic inverse-λ form [19], with capacity values compatible with measured
capacities for different roadways typologies [105].
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4. Discussion and Outlook

In this paper, a new large-scale traffic microsimulation for the urban area of Barcelona
using the software SUMO is presented. It combines novel and more precise origin-
destination matrices estimated from anonymized mobile phone records with traditional
mobility surveys on a network extracted from OpenStreetMap. The resulting model shows a
good level of correspondence with reality (see Figure 12), outperforming previous examples,
after being widely validated by metrics on different scales. It expands the state-of-the-art of
traffic simulation by pushing microscopic approaches into large-scale scenarios supported
by real data to obtain an operationally realistic and efficient model that can assess citywide
impacts at fine-grained detail of policy decisions. Simultaneously, it allows identifying the
limitations of these modelling approaches when considered within the concept of “urban
digital twins”.
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The calibration of the model identified the simulation time step, the probability for
the vehicles to reroute during the simulation, and the influence of the edge priority as the
most relevant factors without having to perform an exhaustive exploration of the huge
parameter space, which often makes the calibration and use of these models impractical.

Two approaches (in-Simulation Adaptive Rerouting, iSAR, and Iterative Incremen-
tal Dynamic User Equilibrium, IIDUE), under two route choice algorithms (Gawron and
c-Logit), were compared to tackle the challenge of distributing a high traffic demand in a
dense and complex large urban network. The lack of analytical form in this microsimu-
lation approach requires an extensive multi-variable empirical evaluation to check their
performance comparing real and simulation data on different spatial and temporal scales.
These different quantitative metrics included the average trip duration, the similarity of
temporal distributions of trips using DTW, and the comparison of simulated and real traffic
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counts based on the linear regression coefficient, R2, RMSE, NRMSE, and GEH statistics.
Additionally, two qualitative tests based on simulation “teleports” and MFDs are included.

iSAR outperforms IIDUE in all the metrics without relevant differences between the
c-Logit and Gawron’s approaches. Computationally, iSAR is more efficient than IIDUE
in approximating the prospective equilibrium state. The best results obtained with the
iSAR approach match the real measured average trip duration of about 23.5 min. The
performance of these models in terms of fitting the traffic counts is also good, having
values over 0.9 (and below 1.1) for the regression coefficient and an R2 value above 0.8.
However, error measures represented by the NRMSE and GEH statistics are less impressive,
with values of 0.38 and 38%, respectively. This demonstrates that accurately reproducing
trip distributions is challenging. In agreement with previous publications, the presented
simulations also tend to underestimate the empirically measured flows, but considerably
less so as compared to other studies. One possible explanation for the remaining problem
is that microsimulations distribute larger volumes of traffic over more secondary streets,
such that the count points on major roads are bypassed.

4.1. Contributions

The resulting overall goodness-of-fit matches outperform the relatively few existing
validated continuous-in-time microsimulation studies published on large-scale urban traffic
flow scenarios, even considering that the presented model checks a larger number of metrics
than these previous scenarios. Moreover, comparatively, the geographical scope, size, and
complexity of this model for Barcelona make this large scenario particularly challenging
(Table 3). This research mastered this by a data processing pipeline and modelling approach,
which allows the handling of large and complex microsimulation urban scenarios more
easily (i.e., simulating a considerably extended spatial area makes it possible to reproduce
through traffic more accurately than through direct simplification). Thereby, the proposed
simulation approach got closer to reality. It could also handle saturated flows much better
even in a large-scale, complex, and saturated setting.

Table 3. Comparison of performance between selected large-scale urban simulations quantitatively
validated. In bold, proposed scenario in this paper.

Year/Ref. Location/Scenario

Metrics

Area
(Extended)

Net Length
(Extended) R2 Regression

Coeff. NRMSE
# Roads
GEH < 5

(GEH < 10)

2020 [85] Ingolstadt (InTAS) 52 km2 717.23 km - - 0.3343 -

2021 [51] Bologna
50 km2

(3703 km2,
simplified)

(3316 km,
simplified) 0.61 0.98 31% (59%)

2021 [29]

Barcelona,
Barcelona Virtual

Mobility Lab
(Macroscopic)

332 km2

(~6000 km2)
4767 km 0.77 0.88 0.35 -

2021 this
paper Barcelona 183 km2

(3126 km2)
2506 km

(24,153 km) 0.81 0.91 0.38 37%
(64%)

From the perspective of the research on high fidelity modelling, this paper tackles the
challenge of providing an operational and effective approach to build a large-scale traffic
microsimulation from novel, more granular, empirical mobility data that is robustly vali-
dated with real observations at different spatio-temporal scales. There are few realistically
validated large-scale urban microsimulations (see Table A1). It is shown how cell phone
tracking data and a faster adaptive stochastic approach provide more realism. In this sense,
the research focuses more on connecting innovative modelling approaches with real data
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both for feeding and evaluation steps. As a simulation that gets as close as possible to the
real system, it is a fundamental component for building a traffic digital twin. In fact, it
matches the early definitions of digital twins [4,106,107] and it is closer to the concept of
digital shadow [108]. Overall, simulation is a fundamental component of digital twins as
it enables the bidirectional interaction between the physical environment and the virtual
model [109,110].

4.2. Limitations

Despite the impressive body of previous work, it is concluded that the development
of highly accurate and realistic models of city-related dynamics at a microscopic scale
remains a key challenge. There is room for improvement to collect more granular data for
modelling and validation. It is possible to add detail to the virtual environment. Scanning
exhaustively the whole parameters space for the sake of calibration is unfeasible because of
limited computational power. For example, the theoretical assumptions used to explain
how people choose their routes and how they plan their trips seem to be insufficient to
fully grasp the underlying interdependencies and complexity when we scale up to a large
system. Thus, the one-dimensional utilitarian assumption that people tend to minimize
travel times, which is behind the common route choice models, is not fully supported by
empirical data [111–113]. This research shows that using a weight.priority-factor accounting
for the hierarchy of roads affects routing and improves model performance. This suggests
the existence of additional underlying factors influencing route choice, which are likely
related to the observed challenges of realistically distributing traffic flow and avoiding
underestimation of counts.

In more general terms, it is possible to pinpoint some existing challenges and limita-
tions of digital twins [108]:

• Ambiguous, non-consensual definition.
• Non-existing functional full-scale examples of digital twins.
• Lack of common data models [114].
• Heterogeneous digital twins environments, data types, and sources [115].
• Potential use of Artificial Intelligence to improve digital twins performance and appli-

cations (by now it is only used at a small scale).
• Need to increase security, decentralization, and sharing capabilities among stakehold-

ers [116], to avoid misuse, cyber threads, and privacy issues [117].
• Need of common ways of sharing data between devices, stakeholders, and environments.
• Need to foster distributed schemes to increase reliability, accuracy, and performance.

4.3. Future Research

Despite these limitations, this work has significantly contributed to the progress and
realism of large-scale microsimulations, as shown above. Therefore, in line with others
before this paper, this research supports the idea that microsimulations can be a powerful
tool to inform researchers, urban planners, policymakers, and citizens, allowing them to
explore alternative scenarios that could not be tested in real life. In this sense, simulations
are valuable for their prospective power, introducing alternatives of how things could be
more than just describing existing systems. However, this is only possible if we ensure
their realism through developing robust and multi-variable evaluation procedures and if
we analyse critically our modelling assumptions beyond equilibrium-seeking approaches.

It became clear that a “digital twin”, which reproduces the traffic of a city exactly, is
still a long way to go. It will probably never be possible unless all degrees of freedom
are eliminated from the system, which would not be desirable, however. In contrast to
modelling the infrastructure in a city, which can be digitally represented with a high degree
of accuracy, the traffic flow dynamics in a city is a “wicked” and complex problem. It is
determined by non-linear dynamics and network interactions, self-organization effects
(such as emergent traffic jams), and large variability. This implies a considerable level of
uncertainty, which is partly due to randomness and non-linear feedbacks, but also due
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to the human element. In fact, the latter has been often neglected in digital twins, even
though it is omnipresent in cities, for example, through decision-making, social interactions
and dynamics, culture, politics, and markets. The issue here is not just the lack of data.
Important qualities relevant for humans, such as consciousness, dignity, creativity, freedom,
meaning, values, and being social are hardly quantifiable, if at all [118].

The identified limitations suggest that it is necessary to expand the research on real-
time data flow between the digital twin and the real system [110], particularly applied
to cities [108] and involving human behaviour [114]. The following research directions
would contribute not only to improving the results of simulations but also more broadly to
the accomplishment of the concept of digital twins. They cover aspects of interaction (1),
data (2–4), and collaboration (5–6):

1. The concept of the digital twin has evolved from simply mirroring as accurately as
possible a physical system [4] to incorporating a bidirectional real-time interaction
between the virtual and physical sides that affects and informs each other [109,110].
How can this virtual-physical interaction be implemented? [116].

2. Digital twins require large amounts of low-latency data [108]. How can more gran-
ular urban real-time data be collected while taking into account legal, ethical, and
privacy issues?

3. Digital twins use massive amounts of data for getting as close as possible to the real
system. However, stochasticity, perhaps amplified by complexity effects, together with
the lack of connection between functional and physical processes to socio-economic
systems, and even the difficulty to quantify many aspects of city life limit their
predictability. Are more data providing more accurate digital mirrors? [3,117]. How
can big data help to provide better human behavioural models?

4. To perform accurately, digital twins require to integrate simulation and optimization in
real-time based on high-frequency and low-latency large amounts of data [108,119,120].
How can it be optimized? How scalable, efficient, and environmentally sustainable it
can be?

5. Digital twins can facilitate the coordination of self-organized bottom processes and top-
down governance enabling participation, self-determination, and democracy [117].
How can digital twins be used to enhance collaboration between different stakehold-
ers, including hybrid settings (i.e., human-human, human-machine, and machine-
machine)? How can the information be shared securely and effectively among stake-
holders? [116].

5. Conclusions

While all of this matters when understanding and modelling city life, modelling traffic
flows a less demanding and possible with a considerable degree of accuracy and realism.
However, human nature still shines through. Precisely, the use of empirical big data
regarding the movement of people and goods allows developing, testing, and validating
new modelling approaches that eventually would lead to a better capturing of reality.

In general, a purely data-driven approach may need to be complemented by a data
science and complexity perspective to provide better predictions. Although this paper
focuses on traffic simulation, the same principles apply to the different interrelated realms
in the built environment such as land use, climate, energy, or economic activity. The
prospective and exploratory power of digital twins in combination with the inclusion of
social and behavioural values can become a facilitator of governance and co-creation of
cities, expanding human decision-making capabilities by using computation.

Funding: This research was funded by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program, grant number 833168.

Data Availability Statement: The raw mobility data based on cell phone records that support the
findings of this study are available from the Generalitat de Catalunya. Restrictions apply to the



ISPRS Int. J. Geo-Inf. 2022, 11, 24 22 of 28

availability of these data, which were used under license for this study. Data are available from the
authors with the permission of the Generalitat de Catalunya.

Acknowledgments: I acknowledge using map data from OpenStreetMap contributors and available
from https://www.openstreetmap.org (accessed on 25 March 2021). I would like to thank Francesc
Calvet (Generalitat de Catalunya) for providing the novel O/D matrices estimated from mobile
phone records. Moreover, I want to thank Nino Antulov-Fantulin for suggestions on how to validate
traffic counts, Dirk Helbing for providing feedback and recommendations particularly regarding
validation and comparative scenarios, and suggesting the discussion of digital twins, and Sachit
Mahajan for helping to address the final comments.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Table A1. Published large-scale urban traffic microsimulations characterized by size, demand creation
and adaptation, traffic modes, and validation technique used which are reviewed.

Year/Ref. Location/Net/Size
Demand

Validation
Creation Adaptation/Calibration Modes

2011 [36] Cologne, OSM,
400 km2

Activity generation
from TAPAS
surveys [121].

1.2 million trips

Microscopic iterative
optimization (Dynamic
Use Equilibrium, DUE)

Car
Qualitative based on

macroscopic
measurements

2013 [33] Ottawa, OSM,
about 1 km2

AADT and turning
counts at

intersections

Routing by turn
probabilities Car

The used demand
adaptation algorithm

tends to generate a
traffic distribution that

matches the input
real data

2014 [34] Vila Real, OSM,
7 km2

Activity generation
from synthetic pop.

based on census
and survey data.
(24,023 people,

10,143 trips)

Microscopic direct
assignment. (DUA)

Car, bus
(public

transport)
No validation

2015 [35]
Bologna, VISSIM.

2 neighbourhoods,
about 2 km2

AADT and turning
counts at

intersections

Direct microscopic
assignment estimated

from counting. (Dynamic
Use Assignment, DUA)

Car, bus

Quantitative comparison
of traffic flow between

simulated and measured.
Only limited to the
morning peak hour

2017 [122]
(LuST)

Luxemburg, OSM,
156 km2, 930 km

of roads.

Activity generation
from a synthetic

population

Microscopic direct
assignment (DUA) &
iterative optimization

(DUE) based on time loss,
rerouting, and
speed metrics

Car, bus

Quantitative
comparison based on
speed distribution in

selected roadways

2018 [37]
(MoST)

Monaco, OSM,
74 km2, 587 km of

roads, with
topography data.

Activity generation
from a synthetic

population

Microscopic direct
assignment (DUA)

Car, bikes,
pedestrians,

public transit

Qualitative validation
only for the morning

peak hour

2019 [38]
(TuST)

Turin, OSM,
500 km2, 6500 km

of roads

O/D matrices from
real observational

data

Macroscopic iterative
assignment Car

Qualitative comparison
with total vehicles

running and expected
average length of trips

https://www.openstreetmap.org
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Table A1. Cont.

Year/Ref. Location/Net/Size
Demand

Validation
Creation Adaptation/Calibration Modes

2019 [39] Berlin, around
4500 km2

O/D matrices from
TAPAS surveys

[120]

First, faster macroscopic
iterative assignment,

followed by slower and
more detailed microscopic

iterative assignment
(DUE)

Car

Not specified. Only
metrics regarding the

speeding up of the
assignment process

2020 [85]
(InTAS)

Ingolstadt, OSM,
52 km2, 717.23 km

of roads

Activity generation
from a synthetic

pop. (109.090
people)

Microscopic iterative
optimization (DUE),

stochastic rerouting in
simulation

Car

Quantitative: absolute
error and NRMSE on

times series of total trips
in the city and
AADT counts

2020 [40]

Ireland. Urban,
rural & motorway.
(Dublin city centre,

17.5 km2)

AADT
counting-based

demand

Direct microscopic
assignment (DUA) with

stochastic rerouting

Car (with
autonomous

vehicles)

Qualitative and limited
to short periods

2020 [50]

Zurich, OSM
simplified net

based on centrality
metrics.

(~900 km2)

O/D matrices

Surrogate iterative models
to optimize global

mesoscopic simulation
parameters

Car

Quantitative validation
based on DTW and

RMSE between
simulated and

measured MFD

2020 [41] Porto. SHP file.
42 km2 O/D matrices

Direct microscopic
assignment (DUA),

iterative assignment
(DUE), and

incremental assignment

Car

Qualitative validation
based on correlation

coefficient, and RMSE
only applied to 6 edges

in two periods of
the day

2021 [51]

Bologna, OSM,
50 km2 detailed

core area,
3703 km2 extended

urban area with
simplified network

Activity-based,
disaggregation of
OD matrices, GPS

traces, GTFS

Mode choice, and iterative
optimization (DUE)

Car, bus,
motorcycle,

bike,
pedestrians

Quantitative validation
based on comparing

AADT between
simulation and reality
(regression Coeff., R2,
GEH). Only morning
peak hour (7–8 am)

2021 this
paper

Barcelona, OSM,
182.55 km2

detailed core area
with 2506 km of
roads, 3126 km2

extended urban
area for whole

demand creation
with 24,153 km

of roads.

O/D matrices from
mobile phone

records +
aggregated data

from mobility
surveys.

3,185,285 trips for
the whole urban
area cropped to

2,063,177 trips for
the core

simulated area

Initial direct microscopic
assignment (DUA), then

refined by stochastic
rerouting and iterative

incremental assignment
(DUE)

Car

Quantitative validation
on comparing

simulation vs. reality of
AADT counts

(regression Coeff., R2,
RNMSE, NRMSE, GEH),
temporal distributions

of trips (DTW), and
macroscopic diagrams
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